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We study a one-dimensional A + B — AB catalytic surface reaction model. The simulation and
analysis by using the master equation and its approximate form (Fokker-Planck equation) both show
that the system exhibits scaling structure and 1/f noise when the rate of desorption pq is equal to
1/(N + 1), where N is the number of sites on the surface. In addition, based upon this model,
another one-dimensional A + B — AB reaction model which exhibits self-organized criticality and

1/ f noise behavior is also constructed.

PACS number(s): 05.40.+j, 82.65.—i, 05.45.+b, 64.60.Fr

The scientific interest in the dynamic behavior of the
catalytic reaction systems has grown during the past
years [1]. Especially, the oxidation of carbon monoxide
on platinum is extensively studied. One of the impor-
tant features is the self-oscillations in the rate of reaction
which has been found experimentally in these catalytic
systems. There have been varieties of theoretical ways to
study the kinetics of catalytic reaction, among these, the
Monte Carlo method, utilized by Fichthorn and his co-
workers recently [2-5], is demonstrated to be a feasible
way. In Refs. [4] and [5], they proposed a very simple
two-dimensional reaction model, i.e., the A + B — AB
model. In that model the reaction mechanism is the
Langnuir-Hinshelwood reaction. With low rates of de-
sorption of the species (A and B), this model can ex-
plain the self-sustained oscillations of the reaction rate
and the fractional coverage of A or B on the catalytic sur-
face. Besides, through computer simulations, they found
that the oscillations observed are a finite-size effect. In
this paper, we study the the one-dimensional version of
the reaction model. Our study is mainly limited to the
one-dimensional system for three reasons. First, the one-
dimensional model already displays a very rich behavior.
Second, with modern computer facilities numerical sim-
ulations of sufficiently high quality are possible in the
one-dimensional system. Third, this model is realistic
for the actual reaction on a ringlike catalytic system. We
will concentrate our attention on the rate of reaction,
because it determines the amount of the radiation en-
ergy and can be measured experimentally. We analyze
this model by using the master equation and its approx-
imate form (Fokker-Planck equation). (This analysis is
also effective for the two-dimensional reaction model in
Ref. [5].) The analysis shows that the kinetic behavior of
the system is related with not only the rate of desorption
but also the size of the system. Moreover, the rate of des-
orption and the size dependence of the kinetic behavior is
drawn quantitatively. At the critical state the system ex-
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hibits scaling structure and 1/f noise. The Monte Carlo
simulation on this model also leads to the same results.
Based upon this analysis, another reaction model that
exhibits self-organized criticality and 1/f noise behavior
is also constructed.

The model mechanism is the Langmuir-Hinshelwood
reaction

kg

Ay +S=A4-8, (1)
ka
kq

B, + S=B-S, (2)
ka

A-S+B-S% AB, + 28, (3)

where A and B are reactants and the subscript g denotes
the gas phase, S represents a vacant surface site, ko, kg,
and k, are the rate constants for adsorption, desorption,
and surface reaction, respectively. The model reaction is
conducted on a one-dimensional lattice with a periodic
boundary condition that represents the catalytic surface.
At the beginning of the reaction, the surface is randomly
populated with 50% A and 50% B. Then a site is selected
randomly and desorption of the species adsorbed on the
site is attempted with a probability of desorption, pg.
If the desorption is successful, the reactant on this site
is replaced by another reactant, which is chosen among
A and B with the same probability. If the desorption
is unsuccessful, another site among the two neighboring
sites is also chosen at random, and if the pair is an A
and a B, reaction takes place and the two are removed
from the surface. Succeeding the reaction, two reactants
among A and B are immediately chosen with the same
probability to adsorb to the two reaction sites.

Now let us analyze this model by using the method of
the master equation. Assuming that the surface is in the
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state x at time ¢, in which the number of A is  while the
number of B is N —z. Here N is the total number of sites
on the surface lattice and is assumed to be considerably
large. If a site of the surface is selected randomly at this
time, A and B will be chosen with a probability z/N,
1 — z/N, respectively. The transition rate from state x
to state (z + 1) is denoted by G(z,t) and that to state
(z — 1) denoted by R(xz,t). When the desorption rate of
species on the surface is pgy, we may get

Gr = (- 2) 152 (- 5.
R(m,t)—%‘i%+l—2pd%(1—%). (4b)

From Egs. (4a) and (4b), we can see that G and R both
do not contain t explicitly and only depend on the inten-
sive quantity 6, here 8 = z/N is the fractional coverage
of A. Hence we have

G(z) = G(9) =

%(1 —0)+ 22Pp1—9), (5a)

R(z) = R(0) = o +1 ”"0(1 - 0). (5b)

The equation of evolutlon for the probability density
W (z,t) of surface state z is given by the well-known mas-
ter equation

% = Gz - 1)W(z —1,t) — G(z)W (z, 1)
+R(z+ 1)W(z + 1,t) — R(z)W (z, 1),
for =0, 1,...,N, (6)
with W(-1,t) = W(N + 1,t) = 0. This equation is a

statistical description of the evolution process, and it is
exact in the large IV limit. In the special case pg = 0, tak-
ing %(f’t) = 0 in Eq. (6), one can obtain immediately
the stationary state. It is

W(z) o 82,0 + bo,N, (7a)

or, expressed in € which, for large N, may be considered
approximately as a continuous variable varying between
0 and 1,

W(0) =46(0)+6(1—9), (7b)

which has two isolated peaks at # = 0 and 6 = 1, respec-
tively. It means that the catalytic surface is completely
occupied by either A or B.

If pg # 0, it is not easy to find the stationary state
by direct inspection. Fortunately, the probability density
W (z,t) is no longer a singular function, we may write the
master equation (6) in the form of the Kramers-Moyal
expansion

n
OWBD) _ S™(0/02) D (&) W (a1, (sa)
i=1

where the Kramers-Moyal coefficents are given by
D™ (z) = (1/nh)[G(z) + (~1)"R(z)]. (8b)

Note that the rates G and R depend only on the intensive

quantity 6. Equations (8a) and (8b) can be expressed as

AW (h,t)
2 = (8/96) D™ (0)W (8, 9
o = 2(0/00DV @OW 0,0, (9)
where the Kramers-Moyal coefficents are given by

1
n!N™

D™ (6) = [G(6) + (=1)"R(®)]- (9b)

When the size N of the system is considerably large, we
truncate expansion (9a) after the second term and obtain
the following Fokker-Planck equation [6]:

ow(0,t) [ 8

o -5 OD(l)(0)+ 69 D(Z)(())] W(6,t), (10a)

where D()(0) and D (8) are drift and diffusion coeffi-
cients and read

D (g) = %[é(ﬂ) — R(6)]
(10b)
= % (% —pde)?
D@ (g) = %[é(@) + R(9)]
(10c)

= vz [+ (1 - pa)o(1 - 0)].

For the stationary state oW 6.t) 0, we can get easily

ot
the solutions W (6) of Eq. (10a) with (10b) and (10c)

1 *pWe) .,
W(O)ocDT)(e)exp [/ WdG}. (11)

First, in the case of pg = 1, the probability density has
the form

W(0) x exp{2N6(1 — 0)}, (12)

which is a Gaussian distribution, centered at § = 1/2.
Second, when pg = pgo = ﬁ, the probability density
W (0) of the the fractional coverage 6 of A is independent
of 0, i.e.,

W (0) = const, (13)

which we mark as the critical state. Obviously, when
pdao < pa < 1, the distribution of coverage has only one
peak at & = 1/2, which corresponds to a monostable
mode. When 0 < pg < pgo, the distribution of coverage
is bimodal with peaks at § = 0 and 8 = 1.

When the rate of desorption pg decreased from 1 to pgo
to 0, the surface state undergoes a transition from monos-
table states to bistable states. When pgq = pgo = ﬁ,
the surface is at the critical state with the distribution
of coverage of A or B being constant. Obviously, the
fluctuations in the coverage scale are of the order of the
square root of the number of sites on the surface when
pg = 1 and there do not exist fluctuations in the coverage
when pg = 0. However, when pg = pgo, the fluctuations
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in the coverage can be calculated through Eq. (13), i.e.,
A% = (6%) — (9)% = L, which is independent of the size
of system, where the symbol { ) represents the average of
the corresponding quantity bracketed. According to the
definition of the rate of reaction in Ref. 5, the fluctua-
tions in the rate of reaction are in agreement with the
fluctuations in the coverage. Therefore, in general, by
decreasing the rate of desorption, the kinetic behavior
ranges from steady to oscillatory and then to virtually
poisoning, and the surface undergoes a transition from
deterministic monostability to bistability. These results
are in accordance with the results obtained in Refs. [4]
and [5]. Monte Carlo simulations on this one-dimensional
reaction model also show that the p; dependence of the
distribution of coverage, fluctuations in the rate of reac-
tion, and the fractional coverage of A or B are the same
as those given in Refs. [4] and [5] (see Figs. 1 and 2 in
Ref. [4]).

In addition, the kinetic behavior of the catalytic sys-
tem is closely related to its size. In fact, for a given value
of p4, by changing the size of the catalytic surface (hence
the value of pqo), we can let the system satisfy pq > pao
Or Pq = Pdo OF Pg < Pdo, i-€., we can make the system un-
dergo a transition from a monostable state to a critical
state or to a bistable state and vice versa. Corresponding
to such transitions, the fluctuations in the rate of reac-
tion and the coverage may enhance or weaken or even
disappear. The change of the system size can be realized
by dividing the surface or by covering the surface with
alumina paint and removing the cover from the surface,
as in Ref. [7].

Simulations were also run in order to examine the scal-
ing property and the power spectrum of the rate of reac-
tion when the system is in the critical state. The rates
of desorption are always chosen to be pg = pao = —N1—+1 in
the simulation. After a certain transient time, the system
enters the critical state which is independent of the ini-
tial configuration. First, the distribution functions D(s)
of clusters for different sizes of lattice N are calculated,
where s is the cluster size (a cluster contains only A or
only B). We find that D(s) obeys the following scaling
law

D(s) xs7P (14)

with s varying in a wide range. Here (3 is a constant.
Taking the finite-size effect into account, we try to fit
these functions by a multifractal form

-0 (matiiy)

log,0 D(s)
log,o(IN/No)

Here g,(z) is a scaling function. With s = 1.5 and
1/No = 4.5, these distribution functions can be fitted
very well, which indicates that lattices with different sizes
N belong to the same universality. The result is shown
in Fig. 1. This result shows that the system is scale
invariant with respect to cluster sizes. It is a character
of fractal. Second, the rate of reaction is recorded as a
function of time. Time in our simulation is also measured
in units of Monte Carlo steps (MCS) which are defined
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FIG. 1. Multifractal scaling plot of the distribution func-
tions D(s) of the cluster size s in the critical state. The sizes

of the system are 1000, 2000, 3000, 4000, and 5000, respec-
tively.

as the time for V desorption or reaction attempts. The
rate of reaction is defined as the number of reactions per
site per MCS and is measured as an average over 2 MCS.
Figure 2 shows the fluctuations in the rate of reaction
with N = 4000. There is a self-similar structure in the
curve. Figure 3 shows the power spectrum of the rate of
reaction. The result is obtained by squaring the Fourier
transformation of the rate of reaction, and the curve in
Fig. 3 has been smoothed by averaging over 0.05 unit of
log,o f. From this figure, one sees that the power spec-
trum has the form of 1/f* with @ = 1.1+0.1 over a wide
range. One can also see that the larger the size of the lat-
tice, the wider the range is, which indicates that the 1/f
noise obtained here is not a finite-size effect. A power
spectrum with this form indicates that the oscillations
are correlated, which is different from that in the bistable
state case where the power spectrum has the form of 1/ f2
and, therefore, the oscillations are essentially stochastic
[4]. In fact, the existence of the correlation of oscillations
in different time is just the reason why the phase transi-
tion between the monostable state and the bistable state
may occur.

Based upon the above analysis, we construct another

0.08

0.04

0.03

0.02

0.01

500 1000

time(MCS)

1500 2000

FIG. 2. The rate of reaction as a function of time (MCS)
in the critical state. Here N = 4000 and pq = and
only 2000 data are given.
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FIG. 3. The power spectra of the rates of reaction in the
critical state. The sizes of the system are 1000, 2000, and
4000, respectively. The dashed line shows the form of 1/f''.

slightly different reaction model A + B — AB. The
only difference from the above model is that the rate
of desorption of every site on the surface is assumed to
be negligible, meanwhile the system is driven by “slow
noise”—random local perturbations every MCS, which
makes the species absorbed on one site of the surface des-
orb. Here one MCS is defined as N reaction attempts.
The noise introduced here is similar with that in the the-
oretical sandpile models [8-11] where a particle is added
until the preceding avalanche has terminated. Obviously,
this new model can approximately satisfy the condition
Pd = Pdo = ﬁi as in the above model statistically.
Moreover, due to the large size of the system, the sys-
tem can keep in or near the critical state if the frequency
of disturbance to the system has little change. So this
model can reach the critical state naturally. Simulations

on this improved model show that the distribution func-
tion D(s) also satisfy the scaling law (14), the distribu-
tion functions D(s) of different sizes of systems can be
fitted together very well by using the multifractal form,
and the power spectrum of the rate of reaction exhibits
the behavior of 1/f* with & = 1.1 4+ 0.1 over a wide
range. Because the scaling property and the power spec-
tra of the rates of reaction for this model are very similar
to those of the above model, the plots of D(s) and the
power spectra of the rates of reaction are left out. In
Ref. 8, the concept of self-organized criticality was intro-
duced, and was expected to be a bridge between fractal
and 1/f noise. The feature of the system is scale in-
variant when it is in the critical state reached through
a self-organized process without the fine tuning of any
parameter. Therefore, the present model can be consid-
ered as one of the models that exhibits self-organization
criticality with both scale invariance and 1/f noise.

In conclusion, we have studied a one-dimensional cat-
alytic surface reaction model, that exhibits scaling struc-
ture and 1/ f noise when the rate of desorption pq is equal
to its critical value. We have also proposed an improved
model that exhibits self-organized criticality. For this im-
proved model, the system can spontaneously reach the
critical state, in which the system is scale invariant and
the power spectrum of the rate of reaction has the form
of 1/f. If accompanying the reaction there is something
radiating, then the radiation also exhibits the behavior of
the 1/ f noise, and it might be regarded as an explanation
about the light from quasars [12].

This work is supported by the National Basic Re-
search Project “Nonlinear Science” and the Natural Sci-
ence Foundation of China. This work is also supported by
the Education Committee of the State Council through
the Foundation of Doctoral Training.

[1] L. F. Razon and R. A. Schmize, Catal. Rev. Sci. Eng.
28, 89 (1986).

[2] R. M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett.
56, 2553 (1986).

[3] R. M. Ziff and K. Fichthorn, Phys. Rev. B 34, 2038
(1986).

[4] K. Fichthorn, E. Gulari, and R. Ziff, Chem. Eng. Sci. 40,
1403 (1988).

[5] K. Fichthorn, E. Gulari, and R. Ziff, Phys. Rev. Lett. 63,
1527 (1989).

[6] H. Ristken, The Fokker-Planck Egquation (Springer-
Verlag, Berlin, 1984), p. 76.

[7] S. X. Zhang, Ph.D. Thesis, University of Illinois, Urbana
(1980).

(8] P. Bak, C. Tang, and K. Wisenfeld, Phys. Rev. A 38,
364 (1988).

[9] L. P. Kadanoff, S. R. Nagel, L. Wu, and S. M. Zhou,
Phys. Rev. A 39, 6524 (1989).

(10] E. J. Ding, Y. N. Lu, and H. F. Ouyang, Phys. Rev. A
46, R6136 (1992).

[11] H. F. Ouyang, Y. N. Lu, and E. J. Ding, Phys. Rev. E
48, 2413 (1993).

[12] See e.g., P. L. Nolan et al, Astrophys. J. 248, 4494
(1981).



